The dynamics of root meristem distribution in the soil.
نویسندگان
چکیده
Plants must develop efficient root architectures to secure access to nutrients and water in soil. This is achieved during plant development through a series of expansion and branching processes, mostly in the proximity of root apical meristems, where the plant senses the environment and explores immediate regions of the soil. We have developed a new approach to study the dynamics of root meristem distribution in soil, using the relationship between the increase in root length density and the root meristem density. Initiated at the seed, the location of root meristems in barley seedlings was shown to propagate, wave-like, through the soil, leaving behind a permanent network of roots for the plant to acquire water and nutrients. Data from observations on barley roots were used to construct mathematical models to describe the density of root meristems in space. These models suggested that the morphology of the waves of meristems was a function of specific root developmental processes. The waves of meristems observed in root systems of barley seedlings exploring the soil might represent a more general and fundamental aspect of plant rooting strategies for securing soil resources.
منابع مشابه
The Pattern of Root Distribution and Water Absorption in Layered Soil
The pattern of root distribution in layered soils is one of the significant issues in the calculations of soil water and irrigation management and planning. The objective of this study was to determine the pattern of root distribution of soybean in layered soils and its effect on water uptake. The research was conducted in a completely randomized design with 15 treatments consisting of three di...
متن کاملارزیابی مدلهای تعرق و جذب آب درخت زیتون با استفاده از لایسیمتر
Different root water uptake models have recently been used. In this article, we use evapotranspiration data and soil water content data obtained from lysimeter measurements and root distribution in soil data obtained from olive tree to evaluate the accuracy of root water uptake models in predicting the soil water content profiles. Depth of lysimeter was 120 cm which was filled with clay-loam. L...
متن کاملUnique Cellular Organization in the Oldest Root Meristem
Roots and shoots of plant bodies develop from meristems-cell populations that self-renew and produce cells that undergo differentiation-located at the apices of axes [1].The oldest preserved root apices in which cellular anatomy can be imaged are found in nodules of permineralized fossil soils called coal balls [2], which formed in the Carboniferous coal swamp forests over 300 million years ago...
متن کاملبررسی الگوی پراکنش ریشه گونه های بلوط ایرانی و زالزالک به منظور استفاده در مدلهای زیست مهندسی (مطالعه موردی: جنگل های منطقه بلوران کوهدشت)
Vegetation due to its root system by creating cohesion of soil particles, significantly affects hill slope mechanical properties related to shallow landslides and slope stability. In this regard, the root engineering characteristics of forest species are important. The aim of this study was to investigate the distribution pattern of persian oak and hawthorn in Zagross forests. For this purpose,...
متن کاملResponses of root growth and distribution of maize to nitrogen application patterns under partial root-zone irrigation
A field experiment was carried out to investigate the effects of varying nitrogen (N) supply andirrigation methods on the root growth and distribution of maize (Zea mays L.) in Wuwei,northwest China in 2011 and 2012. The irrigation treatments included alternate furrow irrigation(AI), fixed furrow irrigation (FI) and conventional furrow irrigation (CI). The N supply treatmentsincluded alternate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2010